3.116 \(\int \frac{\sec (c+d x)}{a \cos (c+d x)+b \sin (c+d x)} \, dx\)

Optimal. Leaf size=41 \[ \frac{\log (a \cos (c+d x)+b \sin (c+d x))}{b d}-\frac{\log (\cos (c+d x))}{b d} \]

[Out]

-(Log[Cos[c + d*x]]/(b*d)) + Log[a*Cos[c + d*x] + b*Sin[c + d*x]]/(b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0816556, antiderivative size = 41, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {3102, 3475, 3133} \[ \frac{\log (a \cos (c+d x)+b \sin (c+d x))}{b d}-\frac{\log (\cos (c+d x))}{b d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/(a*Cos[c + d*x] + b*Sin[c + d*x]),x]

[Out]

-(Log[Cos[c + d*x]]/(b*d)) + Log[a*Cos[c + d*x] + b*Sin[c + d*x]]/(b*d)

Rule 3102

Int[1/(cos[(c_.) + (d_.)*(x_)]*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])), x_Symbol] :>
Dist[1/b, Int[Tan[c + d*x], x], x] + Dist[1/b, Int[(b*Cos[c + d*x] - a*Sin[c + d*x])/(a*Cos[c + d*x] + b*Sin[c
 + d*x]), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3133

Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + cos[(d_.) + (e_.)*(x_)]*(
b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> Simp[((b*B + c*C)*x)/(b^2 + c^2), x] + Simp[((c*B - b*C)*L
og[a + b*Cos[d + e*x] + c*Sin[d + e*x]])/(e*(b^2 + c^2)), x] /; FreeQ[{a, b, c, d, e, A, B, C}, x] && NeQ[b^2
+ c^2, 0] && EqQ[A*(b^2 + c^2) - a*(b*B + c*C), 0]

Rubi steps

\begin{align*} \int \frac{\sec (c+d x)}{a \cos (c+d x)+b \sin (c+d x)} \, dx &=\frac{\int \frac{b \cos (c+d x)-a \sin (c+d x)}{a \cos (c+d x)+b \sin (c+d x)} \, dx}{b}+\frac{\int \tan (c+d x) \, dx}{b}\\ &=-\frac{\log (\cos (c+d x))}{b d}+\frac{\log (a \cos (c+d x)+b \sin (c+d x))}{b d}\\ \end{align*}

Mathematica [A]  time = 0.0168481, size = 18, normalized size = 0.44 \[ \frac{\log (a+b \tan (c+d x))}{b d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/(a*Cos[c + d*x] + b*Sin[c + d*x]),x]

[Out]

Log[a + b*Tan[c + d*x]]/(b*d)

________________________________________________________________________________________

Maple [A]  time = 0.138, size = 19, normalized size = 0.5 \begin{align*}{\frac{\ln \left ( a+b\tan \left ( dx+c \right ) \right ) }{db}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a*cos(d*x+c)+b*sin(d*x+c)),x)

[Out]

1/d/b*ln(a+b*tan(d*x+c))

________________________________________________________________________________________

Maxima [B]  time = 1.09116, size = 139, normalized size = 3.39 \begin{align*} \frac{\frac{\log \left (-a - \frac{2 \, b \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac{a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )}{b} - \frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{b} - \frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{b}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a*cos(d*x+c)+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

(log(-a - 2*b*sin(d*x + c)/(cos(d*x + c) + 1) + a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2)/b - log(sin(d*x + c)/(c
os(d*x + c) + 1) + 1)/b - log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/b)/d

________________________________________________________________________________________

Fricas [A]  time = 0.512886, size = 144, normalized size = 3.51 \begin{align*} \frac{\log \left (2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + b^{2}\right ) - \log \left (\cos \left (d x + c\right )^{2}\right )}{2 \, b d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a*cos(d*x+c)+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/2*(log(2*a*b*cos(d*x + c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2 + b^2) - log(cos(d*x + c)^2))/(b*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec{\left (c + d x \right )}}{a \cos{\left (c + d x \right )} + b \sin{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a*cos(d*x+c)+b*sin(d*x+c)),x)

[Out]

Integral(sec(c + d*x)/(a*cos(c + d*x) + b*sin(c + d*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.15861, size = 26, normalized size = 0.63 \begin{align*} \frac{\log \left ({\left | b \tan \left (d x + c\right ) + a \right |}\right )}{b d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a*cos(d*x+c)+b*sin(d*x+c)),x, algorithm="giac")

[Out]

log(abs(b*tan(d*x + c) + a))/(b*d)